Problem : Total Strongly Connected Components
You are given a graph G with V vertices and E edges. You need to find total number of strongly connected components.
Note: A strongly connected component (SCC) of a directed graph is a maximal strongly connected subgraph.
Total Strongly Connected Components Contest Problem
Hint
Input:
The first line of input contains T denoting the number of testcases. T testcases follow. Each testcase contains 2 lines of input. The first line contains V and E. The second line contains E pairs of vertices, i.e start node and end node for an edge.
Output:
For each testcase, in a new line, print the total strongle connected components.
Constraints:
1 <= T <= 100
1 <= E, V <= 100
Examples:
Input:
1
5 5
1 0 0 2 2 1 0 3 3 4
Output:
3
Explanation:
Testcase1: The graph and components are as follows:
[Solved] Total Strongly Connected Components Contest Problem
Solution:
#include <list>
#include <stack>
using namespace std;
class Graph
{
int V; // No. of vertices
list<int> *adj; // An array of adjacency lists
// Fills Stack with vertices (in increasing order of finishing
// times). The top element of stack has the maximum finishing
// time
void fillOrder(int v, bool visited[], stack<int> &Stack);
// A recursive function to print DFS starting from v
void DFSUtil(int v, bool visited[]);
public:
Graph(int V);
void addEdge(int v, int w);
// The main function that finds and prints strongly connected
// components
void printSCCs();
// Function that returns reverse (or transpose) of this graph
Graph getTranspose();
};
Graph::Graph(int V)
{
this->V = V;
adj = new list<int>[V];
}
// A recursive function to print DFS starting from v
void Graph::DFSUtil(int v, bool visited[])
{
// Mark the current node as visited and print it
visited[v] = true;
// Recur for all the vertices adjacent to this vertex
list<int>::iterator i;
for (i = adj[v].begin(); i != adj[v].end(); ++i)
if (!visited[*i])
DFSUtil(*i, visited);
}
Graph Graph::getTranspose()
{
Graph g(V);
for (int v = 0; v < V; v++)
{
// Recur for all the vertices adjacent to this vertex
list<int>::iterator i;
for(i = adj[v].begin(); i != adj[v].end(); ++i)
{
g.adj[*i].push_back(v);
}
}
return g;
}
void Graph::addEdge(int v, int w)
{
adj[v].push_back(w); // Add w to v̢۪s list.
}
void Graph::fillOrder(int v, bool visited[], stack<int> &Stack)
{
// Mark the current node as visited and print it
visited[v] = true;
// Recur for all the vertices adjacent to this vertex
list<int>::iterator i;
for(i = adj[v].begin(); i != adj[v].end(); ++i)
if(!visited[*i])
fillOrder(*i, visited, Stack);
// All vertices reachable from v are processed by now, push v
Stack.push(v);
}
// The main function that finds and prints all strongly connected
// components
void Graph::printSCCs()
{
int counter=0;
stack<int> Stack;
// Mark all the vertices as not visited (For first DFS)
bool *visited = new bool[V];
for(int i = 0; i < V; i++)
visited[i] = false;
// Fill vertices in stack according to their finishing times
for(int i = 0; i < V; i++)
if(visited[i] == false)
fillOrder(i, visited, Stack);
// Create a reversed graph
Graph gr = getTranspose();
// Mark all the vertices as not visited (For second DFS)
for(int i = 0; i < V; i++)
visited[i] = false;
// Now process all vertices in order defined by Stack
while (Stack.empty() == false)
{
// Pop a vertex from stack
int v = Stack.top();
Stack.pop();
// Print Strongly connected component of the popped vertex
if (visited[v] == false)
{
counter++;
gr.DFSUtil(v, visited);
}
}
cout<<counter<<endl;
}
// Driver program to test above functions
int main()
{
int testcases;
cin>>testcases;
while(testcases--)
{
int V, E;
cin>>V>>E;
Graph g(V);
for(int i=0;i<E;i++)
{
int u,v;
cin>>u>>v;
g.addEdge(u,v);
}
g.printSCCs();
}
return 0;
}